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ABSTRACT

Protein families often are characterized by conserved
sequence patterns or motifs. A researcher frequently
wishes to evaluate the significance of a specific
pattern within a protein, or to exploit knowledge of
known motifs to aid the recognition of greatly diverged
but homologous family members. To assist in these
efforts, the pattern-hit initiated BLAST (PHI-BLAST)
program described here takes as input both a protein
sequence and a pattern of interest that it contains.
PHI-BLAST searches a protein database for other
instances of the input pattern, and uses those found as
seeds for the construction of local alignments to the
query sequence. The random distribution of PHI-
BLAST alignment scores is studied analytically and
empirically. In many instances, the program is able to
detect statistically significant similarity between
homologous proteins that are not recognizably related
using traditional single-pass database search
methods. PHI-BLAST is applied to the analysis of
CED4-like cell death regulators, HS90-type ATPase
domains, archaeal tRNA nucleotidyltransferases and
archaeal homologs of DnaG-type DNA primases.

INTRODUCTION

We describe here the pattern-hit initiated BLAST (PHI-
BLAST) program, whose hybrid strategy addresses a type of
guestion frequently asked by researchers: namely, is a particular
pattern seen in a protein of interest likely to be functionally
relevant, or does it occur simply by chance? To address this
guestion, we combine a pattern search with a search for
statistically significant sequence similarity. These two ap-
proaches were combined previously in a program that explored
the output of a BLAST search for conserved pattefi@. (
PHI-BLAST implements a reverse strategy which is computa-
tionally more efficient, and which we believe will be of greater
utility. Specifically, the similarity search is restricted to a subset
of the sequence database comprised of the sequences that contail
the given pattern.

The input to PHI-BLAST consists of a protein or DNA
sequence, along with a specific pattern occurring at least once
within the sequence. The pattern is currently required to be a
sequence of residues or sets of residues, with ‘wild cards’ and
variable spacing allowed; all PROSITE patterdi<),( for
example, have this form. For each match between an instance of
the pattern in the query sequence and an instance in a databas
sequence, PHI-BLAST constructs a high-scoring local alignment
that includes the match. All resulting alignments are sorted by
score and evaluated statistically.

This approach has greatest utility when it is suspected that a few
residues comprising a small motif may be crucial for the
biological function of interest. Showing that this pattern occurs

In the analysis of a protein or DNA sequence, particular interegfiihin an extended and statistically significant alignment of the

often focuses upon a small region, domain or sequence pattejfiery sequence with one or more database sequences greatly
A natural question is whether there are other related sequengggces the likelihood that the pattern is spurious. Conversely,

that share the same pattern. The most widely used tools fQ&isting on the presence of the pattern and hence searching a
sequence similarity search allow matching between arbitrapgqyced sequence space may aid the detection of subtle simila-

regions of the query and database sequene&} (n contrast, ities that blend into the background noise in a regular BLAST
many motif-based search methods seek database sequencesgiidicn.

match a pre-specified patte®(2). If this pattern is too weak,

or not specified with sufficient precision, the number of matcheg - PHI-BLAST ALGORITHM

may be very large, most being of no biological relevance. On the

other hand, an overly-specific pattern may exclude manjo search for matches to a given pattern, we adapted a method of
sequences of interest. Baeza-Yates and Gonnet3 and Wu and Manberl{). This
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method permits simple patterns to be represented in a singdebabilities for the various possible residues. To estimate the
computer word and matches to be found very efficiently. Wherandom distribution o, we start by considering the distribution
the pattern is relatively complex, for example consisting of mangf the score§; andS; of which it is the sum. Each of these scores
rigid parts and/or having wide ranges of spacer lengths, oaan be thought of as the result of the gapped extension routine
program first searches for the rigid part that is least likely to matdcpplied to a pair of random sequences. In the limit of large values
by chance alone, and then performs local searches for tfar theX-dropoff parameter(18), S is the score of the optimal
remaining pattern elements. local alignment required to start at a particular paifithe much

For each instance of the input pattern in a database sequerstadied Smith—Waterman alignment scot i§ just this con-
paired with an instance in the query, PHI-BLAST attempts to findtrained local alignment score, maximized over all path graph
the optimal local alignment1(l5) containing the aligned pointsP. The distribution of Smith—Waterman scores has been
patterns. This can be done rigorously by applying dynamiestablished empirically to follow an extreme value distribution,
programming {6,17) to the parts of the two sequences precedinwwhose scale or decay paramelerdoes not change with
and the parts following the pattern. The alignment returned iacreasing search space sizg&81—24). This implies £5) that the
required to begin at the corner of the path graph, but is permittetribution of S; should have an exponential tail, with decay
to end anywhere within the graph. The difficulty with thisparameteiA equal to that of the extreme value distribution for
approach is that, to guarantee optimality, a very large portion &mith—Waterman scores. Some simple calculus then yields that
the path graph needs to be searched, and this requires inordirfatesufficiently large scoreg the distribution o8 =& + S has
time in a database searct8), Accordingly, we have used the the formProb(S = X) = C(Ax + 1)e™ for some constai@. The
gapped extension heuristic described in Altsehtudl (5) and  scores of optimal local alignments constrained to contain distinct
Zhanget al (18). Basically, path graph cells are considered onlypattern pairs may be correlated, but the expected number of
if the score of the best alignment leading into them falls no momdignments attaining a given score is independent of such
than X below the best score yet found. For sufficiently largecorrelation. Therefore, the expected number of chance align-
values of th& parameter, this approach almost always returns thments produced by PHI-BLAST with reduced score at beisst
optimal local alignment. Ax

Because PHI-BLAST performs a gapped extension whenevEfS 2X) = CNAx + 1) 1

an instance of the input pattern is encountered in the databasegapes o for a variety of amino acid substitution matrices and
reas_onable execution times depend upon such instances b B9 costs have been reporté)] and their validity tested on a
relatively rare. Therefore, we allow only patterns that arg;,qe number of protein familie&6). The values fok employed
expected to occur less frequently than once per 5000 databgsge giffer slightly from those published previously, because
residues. Any pattern that contains four completely specifiefle haye re-estimatedusing larger and therefore more accurate
residues, or three specified residues whose average backgrodpdyations. The parametérof equationl is new and requires
frequency is5.8%, passes this test. Of course, the more specifis oy estimation. Random simulation (data not shown) using
the input pattern, the faster PHI-BLAST will run. The frequency,o background amino acid frequencies of Robinson and

with which a pattern will occur within the database can b@qpinson 20) yieldsC = 0.6 for the BLOSUM-62 matrix(?) in
estimated easilyl{) from background amino acid frequencies conjunction with the complete range of affine gap costs useful for

(20). standard protein sequence comparign\/e will consider the
validity of equation 1 after discussing several biological
STATISTICAL ANALYSIS examples.

An aIignmentA produced by PHI-BLAST may be divided into IMPLEMENTATION AND EXAMPLES
three parts: the regiofyy spanned by the input pattern, and the
local alignment#\; andA, produced to either side 8§ by the  To enhance the utility and functionality of a WWW-based version
gapped extension routine. Either or bothAgfandA, may be  of PHI-BLAST, we have nested it between two other programs.
empty. Correspondingly, the scdBeof the alignment may be While one may define a pattern based upon specific knowledge
divided into the score), S; andS,. For the purpose of statistical concerning the query sequence, a researcher often wishes to
analysis, it is easiest to assume that all alignment regiptgt  search a pattern-database for any well-characterized motifs the
satisfy the input pattern are of equal biological plausibility, anduery may contain. To streamline this latter approach, we have
therefore to ignore their scores. Accordingly, each alignmeritnplemented a program that first searches the PROSITE database
produced by PHI-BLAST is ranked by its reduced s&®reS;  (12) with the query; any patterns found may then be used to
+ S$. For a given valug, we wish to estimate how many launch a PHI-BLAST database search. To facilitate more detailed
alignments are expected to have a reduced Scarepurely by  analysis of PHI-BLAST output, we allow it automatically to
chance. serve as the basis for constructing a position-specific score matrix
In general, the input pattern is chosen because it is known fiar further database searching via the position-specific iterated
correspond to some feature of biological interest. Therefore, VeLAST (PSI-BLAST) programX). Like other BLAST family
make no statistical inference from the number of times the pattepnograms, PHI-BLAST incorporates a pre-filter for protein
is observed to occur within the query sequemgg &nd the regions of biased amino acid composition (low complexity) that
database as a wholg). We simply recor =ng ng, the number  often corrupt database search&sZ9).
of distinct pattern pairs that may seed a PHI-BLAST local PHI-BLAST may detect subtle relationships that escape
alignment. standard database similarity searches, but this potential depends
The simplest model of protein sequences is as random stringigon the specification of an amino acid pattern likely to be
of amino acids, chosen independently with specific backgrourmbnserved within the protein family of interest. We discuss four
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examples involving protein families whose original descriptiorsequence became available, this conclusion had been reachec
depended critically upon detecting relatively weak sequend@rough a laborious comparison of CED4 to a large number of
similarities. In each case, PHI-BLAST reports a subtle bulifferent ATPases3Q). Because the Apaf-1 sequence is highly
structurally and functionally relevant relationship. The alignsimilar to homologous plant proteins, the connection between
ments suggesting these relationships are not all statisticalBED4 and the plant proteins can be easily demonstrated by
significant but, in each database search output rankedvalyie, iterative database search).(Even without Apaf-1, however,
they appear immediately after the alignments involving cledPHI-BLAST is able immediately to establish this link.

family members, thereby prompting further analysis. In contrast,

any of these similarities reported by gapped BLASY d&re  HS90-type ATPase domains

preceded by a number of alignments with smateralues ) ]

involving unrelated sequences. The four examples discuss¥é¢ used PHI-BLAST to investigate the subtle but structurally
below are summarized in TableAll searches were performed Validated relationship between the ATPase domains in the MutL

on the non-redundant (NR) protein sequence database maintaif¥§A repair proteins, type Il topoisomerases, histidine kinases

by the NCBI @0). and HS90 family proteins36,37). The output identified a new
family of eukaryotic proteins that contain the same type of
CED4-like cell death regulators predicted ATPase domain, but that in standard database searche:

do not show significant similarity to any known member of the
The Caenorhabditis eleganprotein CED4 is a regulator of syperfamily. A PHI-BLAST search with tHEscherichia coli
programmed cell death (apoptosis). CED4 contains the classigaiitL protein 38) as query showed moderate similarBMalue
P-loop motif involved in phosphate binding and found in a greas.017) to theC.elegansprotein ZC155.339) that was originally
variety of ATPases and GTPases. ATP binding by CED4, and tiescribed as having ‘weak similarity to Bovine synaptocanalin I.
role of ATP in its function, have been demonstraBsdBP). Ina  Subsequent database searches with this worm protein sequence a
gapped BLAST search of the NR database, CED4 showgiery revealed homologs in humans (KIAA0138))(@nd plants
statistically significant sequence similarity to only one proteirg41,42), whereas a PHI-BLAST search also showed convincing
the human apoptosis regulator Apaf-1, in which the P-loop isimilarity to MutL family members (bedi-value 6x 1075).
conserved{3,34). However when PHI-BLAST is used, requir- Elucidation of the function of this new family of eukaryotic
ing conservation of the P-loop (Talile the best hit after Apaf-1, ATP-utilizing enzymes will be of considerable interest; the
with E-value 0.038, is to a plant disease resistance proteigynaptocanalin domain apparently was fused to the worm protein
Arabidopsis thaliana 7N9.18 @5). Further sequence compari- by exon misassembly.
son shows that animal apoptosis regulators and putative plant
ATPases involved in disease resistance share several conserxeg,
motifs, suggesting that they have a common origin and may have
similar roles in programmed cell death (L.Aravind, V.M.Dixit The archaeal tRNA nucleotidyltransferases (Cca) are a distinct
and E.V.Koonin, unpublished observations). Before the Apaf-tamily of nucleic acid polymerase43) that in standard database

aeal tRNA nucleotidyltransferases

Table 1.Detection of subtle protein sequence relationships using PHI-BLAST

Conserved domain or motif Pattern® GenBank (30)  Top non-trivial relevant Top non-trivial relevant
under investigation accession no. hit found by PHI-BLAST  hit found by BLAST

of query Accession no.  E-value  Accession no.  E-value
A. P-loop ATPase domain in [GAIxxxxGKI[ST] 231729 2213598 0.038 2961373 4.7

apoptosis regulators and plant
stress response proteins

B. ATPase domain in mismatch hxhxDxGxG 127552 488200 0.017 2495364 1.8
repair protein MutL, type II

topoisomerases, histidine kinases,

and HS90 molecular chaperones

C. Nucleotidyltransferase DhDhhh 2826366 2650333 0.061 2650333 8.6
domain in archaeal tRNA
nucleotidyltransferases

D. Motif VI of superfamily II QxxGRx[GAIR 2128723 2499099 0.54
helicases in archaeal homologs
of bacterial DNA primases

The reported results are from searches of the NCBI (30) non-redundant protein sequence database (April 9, 1998; 298 842
sequences; 90 087 406 residues). The PHI-BLAST and BLAST algorithms used the BLOSUM-62 substitution matrix
(27), in conjunction with penalties of 1kifor gaps of lengthk. BLAST E-values were calculated using the statistical
parametera = 0.270 andK = 0.047, and applying an edge-effect correction (4). PHI-BLES&lues were calculated

from equatiorl, using the statistical parametars 0.270 andC = 0.6.

aPatterns are described using the one-letter amino acid code. Brackets represent a choice among any of the enclosed
amino acids. ‘X’ represents any amino acid. ‘h’ represents [ILVMF], a hydrophobic amino acid.
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searches do not have detectable similarity to any proteins oth#yservations). The similarities uncovered in this example are
than orthologs from other archaeal species. However, they dodetectable with standard database search techniques.
contain a conserved motif, with two aspartate residues, that
resembles the catalytic sites of many other polymeras®s ( PERFORMANCE EVALUATION
When this pattern (Tablb is specified in a PHI-BLAST search . ,
with Methanococcus jannasch@ica ¢5) as query, the top hit 10 test the accuracy of the PHI-BLAST statistics given by
outside the archaeal Cca family itself, witivalue 0.061, is to €quation1, we used each of the examples above to search
hypothetical protein AF0299 froArchaeoglobus fulgidugie), ~ random databases’ constructed from NR by shuffling or
which belongs to a previously described archaeal family d€Vversing each sequence. For each query, the lowest recorded
predicted nucleotidyltransferases7y; the third hit E-value E-value, and the number of alignments found \Eitvalues 10,
0.13) is to an experimentally characterized streptomyciA® diven in Table. For the shuffled database, the geometric
3"-adenylyltransferase frofnterococcus faecaligls). mean of the observed numbers of sequencesSwitiiues< 10 is

10.0, and no single case diverges from this value by more than a
factor of 2.5. This might be expected, as the valukaniC used

Table 2. Accuracy of PHI-BLAST statistics . . ! -
in equatior were calculated employing a random protein model

Example Shuffied database Reversed database in which all amino acids occur independently. Perhaps surprisingly,
Table2 suggests that under an alternative random protein model,
Low E-val.  Seqs with ~ Low E-val.  Seqs with based upon reversed real sequences, these statistics are slightl
E-val. €10 E-val. £ 10 conservative.
A 10 4 18 ) To compare the speed of PHI-BLAST to that of a standard
B 0.64 9 1.1 10 gapped BLAST prograntj we timed both for searches of each
C 0.12 23 1.2 10 of the four examples above against the NR database. Analysis of
D 0.55 12 2.7 2 the results (Tabl8) suggests that on the computer system used,
[B s of each PHI-BLAST run were required to scan the database

_ for pattern hits and for system overhead; the remainder was spent
P:l:]'B',-\IARS; TesrCheS "‘_’sretﬁerf"":‘ed on 5:”ﬁ'ednz”d re"e_rsteg Ve;ts"::s %1 constructing gapped extensions for all pattern hits found.
ofthe R database, using e query sequences and associated patteins &a4ry the number of hits generated by the input pattern is a key
Table 1, as well as the same alignment scoring system and statistical paraij t . t of PHI-BLAST’ d. F latively inf ti
metersk andC. A, CED4-like cell death regulators; B, HS90-type ATPase elerminant o = S speed. _QI’ relatively informa _|ve
domains; C, archaeal tRNA nucleotidyltransferases; D, archaeal homo- patterns PHI-BLAST is very fast, requ'“”g not much more time
logs of DnaG-type DNA primases. than that needed to search for pattern hits. For relatively weak
patterns, PHI-BLAST expends most of its effort extending hits,

and can require time comparable to that for gapped BLAST.
Archaeal homologs of DnaG-type DNA primases

Archaeal homologs of bacterial DNA primases, é.gannaschii CONCLUSION

protein MJ120645), contain a motif typical of helicase&/, but ~ As illustrated by the biological examples discussed above,
do not show significant similarity to these proteins in standarBHI-BLAST helps both to ascertain the biological relevance of
BLAST searches. Usinlgl.jannaschiiMJ1206 and the helicase patterns detected within protein sequences, and in some cases tc
motif as query, the first non-trivial PHI-BLAST hit, wihvalue  detect subtle similarities that escape a regular BLAST search. We
0.54, is to the well known helicabieisseria gonorrhoeadvrB  note, however, that PHI-BLAST was specifically designed to
(49). The relevance of the helicase motif in the archaeal primasembine pattern search with the search for statistically significant
homologs is supported by an extended alignment with the UvrSequence similarity, rather than to maximize search sensitivity.
helicase (L.Aravind, D.D.Leipe and E.V.Koonin, unpublishedThus in general one should not expect PHI-BLAST, which by its

Table 3.Execution speed of PHI-BLAST

Example  Length No. of instances of ~ PHI-BLAST execution =~ BLAST execution
of query  pattern in database  time (seconds) time (seconds)
A 549 14582 26 77
B 615 2986 12 103
C 449 1890 10 71
D 424 672 9 64

The four examples of Table 1 were used to search the NR database using PHI-BLAST, and BLASTP
version 2.0.4. Both programs employed the same substitution and gap costs, and Xherepaié
parameter. This timing experiment was run on one 168 MHz UltraSparc processor of a Sun Ultra
Enterprise 4000/5000 server with 768 Mbytes of RAM. This machine runs the operating system So-
laris, version 2.6, which is an implementation of UNIX. We used the current Sun C compiler, with
the -O option for optimization, to compile both programs. The times given are the sum of the user
and system times reported by three command, and are for the better of two identical runs. A-D,

as in Table 2.



3990 Nucleic Acids Research, 1998, Vol. 26, No. 17

nature is a single-pass search method, to be more sensitive th@&nZhang,Z., Berman,P. and Miller,W. (1998Comput. Biol 5, 197-210.

PSI-BLAST 6). Furthermore, within proteins, residues that are?
absolutely conserved during evolution constitute a small minorit)%0
and even specifying a restricted set of possibilities for a given
residue position often excludes many members of a protein
family. PHI-BLAST therefore is not the ideal tool for completely22
delineating a class of related proteins. However, by great
restricting the size of the search space, PHI-BLAST can allow thg
similarities of some distant homologs to rise above the backs
ground noise that would otherwise obscure them. Such findings
can be used subsequently for more extensive family analy g
using PSI-BLAST %) or other tools.

We have developed PHI-BLAST for protein—protein compariog
son, but plan to extend its applicability. A version that translate®
a DNA database in all six reading frames for comparison to a
protein query would be particularly valuable, and a DNA-DNA
comparison version should also find use. We also plan to extegg
PHI-BLAST so that it may use generalized affine gap cé8ls ( 32
in place of the traditional affine gap costsl54) currently
permitted.

34
Note

3
Source code for PHI-BLAST is available by anonymous ftp from
the machine ncbi.nim.nih.gov, within the directory ‘blast’, and36
the program may be run from NCBI's web site at37
http://www.ncbi.nlm.nih.gov/
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